

Implementation of TCP Recognition of Broken
Order (TCP-BO) Algorithm

 Monika Nath Nidhi Sharma

Dept. of Computer Science and Engg. Dept. of Computer Science and Engg.,
Swami Devi Dyal Group Of Professional Institutions Swami Devi Dyal Group Of Professional Institutions

Barwala,Haryana,India Barwala,Haryana,India

Abstract— The transmission control protocol (TCP) is one of
the most popular and widely used end-to-end protocols for the
Internet today. Unlike routing, where packets are relayed
hop-by-hop toward their destination, TCP actually provides
reliable end to-end transmission of transport-level segments
from source to receiver. As TCP was designed for wired
networks it considers that all packet loss in the network is due
to congestion. Wireless medium is more exposed to
transmission errors and sudden topological changes. So in this
paper, we have analyzed the performance of TORA ,which
was one of important hierarchal routing protocol under TCP-
SACK. In this paper, we also proposed TCP Recognition of
Broken Order and Answer with Time Stamp (TCP-BO)
algorithm, the negativity of TCP has been conquering, and it
is confirmed that broken order packet is delivered due to
multi-path routing protocol. The simulation shows that, TCP-
BO algorithm has higher performance than TCP-SACK. The
TCP with selective acknowledgement scheme (TCP SACK)
improves TCP performance by allowing the TCP sender to
retransmit packets based on selective ACKs provided by the
receiver.
Keywords— MANET, TCP, SACK.

I INTRODUCTION
Transmission Control Protocol (TCP) is a connection
oriented point-to-point protocol. It is a means for building a
reliable communications stream on the top of the unreliable
Internet Protocol (IP). TCP is the protocol that supports
nearly all Internet applications.
TCP in the Internet protocol stack
Figure 1, Shows the structure of the Internet protocol stack,
in which the TCP/IP is composed of the Network (IP) layer
and Transport (TCP) layer. Each layer is responsible for a
particular purpose which is to make various hosts to
communicate with each other; hosts may be computers, or
processes with in a computer. (IPS) Internet protocol stack
is redesigned from the formerly used OSI reference model.

Figure 1: Internet protocol stack

The application layer is liable for the production and
consumption of the user’s data which passes through each
layer of the stack and is transferred transversely the
network.
Various Application programs such as, Internet Explorer,
File Transfer, E-mail, and World Wide Web (WWW) run
under this layer. Each application programs has a fragment
in it that resides in the application layer; this fragment is
called Application Layer Entity, e.g.
 • Internet Explorer: It uses Hyper Text Transfer Protocol
(HTTP) protocol of the application layer for the exchange
of messages.
• File Transfer: It uses File Transport Protocol (FTP).
• E-mail: It uses Simple Mail Transfer Protocol (SMTP) to
send messages.
• World Wide Web (WWW): It uses the application
protocols with some additional components. The
application layer and transport layer communicate with
each other by using ports and sockets.
The transport layer is responsible for the end-to-end
transmission of the data formed by the application layer.
Mostly used transport protocols are the User Datagram
Protocol (UDP) and the Transmission Control Protocol
(TCP). UDP provides a unreliable data delivery over IP, as
it is a connectionless transport protocol. While TCP is
connection oriented and it guarantees delivery of the
packets routed by the network layer. Every application is
coupled with an exacting port number in the transport
protocol.
The network layer is mainly work with routing of packets
between sender and receiver hosts. For this purpose, every
node in the global Internet is having a unique IP address,
which is helpful for uniquely identifying a specific host.
The Network layer supports different routing protocol like
Dynamic Source Routing Protocol (DSR), Temporally
Ordered Routing Algorithm (TORA).
The link layer or data-link layer or network interface layer
specifies the mechanism of how the packets of the network
layer are transported over the physical medium between
two nodes. The data link layer uses ARP Address
Resolution Protocol in order to determine the IP address of
the particular host in to hardware. It deals with physical
transmission details such as frame size, synchronization,
etc.
A. Connection setup
In TCP, both the hosts (sender and receiver) that want to
communicate with each other for a certain amount of time,
they handshake with each other. Handshaking consists of

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6218

three phases. Connections are established in TCP by means
of the three-way handshake. To establish a connection, one
side, say, the server passively waits for an incoming
connection by executing the LISTEN and ACCEPTS
primitives, either specifying a specific source or nobody in
particular. The other side, say, the client, executes a
CONNECT primitive, specifying the IP address and port to
which it wants to connect, the maximum TCP segment size
it is willing to accept, and optionally some user data (e.g., a
password). The CONNECT primitive sends a TCP segment
with the SYN bit on and ACK bit off and waits for a
response.

Figure 2: Concept of Hand Shaking

B. TCP Selective Acknowledgment (TCP-SACK)
TCP-SACK (Selective Acknowledgment) [8] conserves the
basic ideology of the TCP functionalities. The TCP-SACK
works best when various packets got dropped from one
window of data. The receiver uses the ‘option’ fields of
TCP header (SACK option) for notifying the sender of
three blocks of non-contiguous set of data received and
enqueued by the receiver. The first starting block represents
the most recent packet received, and the next blocks
represent the most recently reported SACK blocks. The
sender keeps a scoreboard in order to provide information
about SACK blocks received so far. In this way, the sender
can conclude that whether there are missing packets at the
receiver. If so, and its congestion window permits, the
sender retransmits the next packet from its list of missing
packets. In case there are no such packets at the receiver
and the congestion window allows, the sender simply
transmits a new packet.
As per the previous discussion, fast retransmission and fast
recovery can only handle one packet loss from one window
of data with in one transmission time out period; TCP may
experience poor performance when multiple packets are
lost in one window. To overcome this limitation, recently
the Selective Acknowledgement option (SACK) is
suggested as an addition to the standard TCP
implementation. In the event of multiple losses within a
window, the sender can conclude that which packets have
been lost and should be retransmitted using the information
provided in the SACK blocks. A SACK-enabled sender can

retransmit multiple lost packets in one RTT instead of
detecting only one lost packet in each RTT.
The SACK implementation also enters fast recovery upon
the receipt of generally three duplicate acknowledgments.
Then, its sender retransmits a packet and reduces the
congestion window by half. During fast recovery, SACK
controls the estimated number of packets outstanding in the
path (transmitted but not yet acknowledged) by maintaining
a variable called pipe. This variable determines if the
sender may send a new packet or retransmit an old one, in
that the sender may only transmit if pipe is smaller than the
congestion window. At every transmission or
retransmission, pipe is incremented by one, and it is
decremented by one when the sender receives a duplicate
ACK packet containing a SACK option informing it that
the receiver has received a new data packet.
The fast recovery is over when the sender receives an ACK
acknowledging all data that were outstanding when fast
recovery was entered. If the sender receives a partial ACK,
i.e., an ACK that acknowledges some but not all
outstanding data, it does not exit fast recovery. For partial
ACKs, the sender reduces pipe by two packets instead of
one, which guarantees that a SACK sender never recovers
more slowly than it would do if a slow start had been
invoked [4].
Generally speaking, Selective Acknowledgment (SACK) is
a strategy that corrects the above TCP behaviour in the face
of multiple dropped segments. With selective
acknowledgments, the data receiver can inform the sender
about all segments that have arrived successfully, so the
sender needs to retransmit only the segments that have
actually been lost.
Even though the TCP selective acknowledgment
mechanism can allow a SACK-enabled sender to retransmit
in one RTT multiple lost packets in one transmission
window and hence avoid continuous timeouts, this
mechanism does not distinguish the reasons for packet
losses and still assumes that all losses are caused by
congestion. As a result, TCP congestion control procedures
are inappropriately called for, which affects the sender’s
transmission rate.

B. Temporally Ordered Routing Algorithm (TORA)
The Temporally Ordered Routing Algorithm (TORA) is a
highly adaptive and competent disseminated multi-path
routing algorithm based on the concept of link reversal.
TORA is projected for highly vibrant mobile, multihop
wireless networks. It is a source-initiated on-demand
routing protocol. This means, the protocol is called
whenever and where ever there is a need to route packets
between sender-receiver pair.
It finds multiple routes from a source node to a destination
node. The main feature of TORA is that the control
messages are localized to a very small set of nodes near the
occurrence of a topological change. All the nodes maintain
routing information about adjacent nodes. This protocol has
three basic functions:
Route creation
Route maintenance
Route erasure [9].

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6219

Each node has: –
 Logical time of a link failure
 The unique ID of the node that defined the new

reference level
 A reflection indicator bit 0= original level, 1=reflected

level
 A propagation ordering parameter to order nodes

relative to reference level
 The unique ID of the node
The first three elements collectively represent the reference
level. A new reference level is defined whenever a node
loses its last downstream link due to a link failure. The last
two values define a height with respect to the reference
level.
The route creation algorithm starts with the height
(propagation ordering parameter) of destination set to 0 and
all other node's height set to NULL (i.e. undefined). The
source broadcasts a QRY packet with the destination node's
id in it. A node with a NONE-NULL height responds with
a UPD packet that has its height in it. A node receiving a
UPD packet sets its height to one more than that of the
node that generated the UPD. A node with higher height is
considered upstream and nodes with lower height
downstream. In this way a directed acyclic graph (DAG) is
constructed from source to the destination. Figure 2.5
illustrates a route creation process in TORA [9]. As shown
in figure 2.a, node 5 does not propagate QRY from node 3
as it has already seen and propagated QRY message from
node 2. In figure 2.b, the source (i.e. node 1) may have
received a UPD each from node 2 or node 3 but since node
4 gives it lesser height, it keeps that height.
When a node moves, the DAG route is broken; route
maintenance is needed to re-establish a DAG for the same
destination. When the last downstream link of a node fails,
it generates a new reference level. This results in the
propagation of that reference level by neighbouring nodes
as shown in figure 3. Links are reversed to reflect the
change in adapting to the new reference level. This has the
same effect as reversing the direction of one or more links
when a node has no downstream links.

(A) Propagation of QRY message through the network

(B) Height of each node updated as a result of UPD

messages
Figure 3: Route creation in TORA

In the route erasure phase, TORA provides a broadcast

clear packet (CLR) throughout the network to erase invalid
outes.

Figure 4. Re-establishing route on failure of link 5-7. The

new reference level is node5

II. RELATED WORK
There are many simulation-based investigations of the
problematic aspects of TCP in wireless network
environments. For example, [9] shows that long sudden
delays, mostly attributed to handovers, are common in the
GPRS wireless WAN. It explores the influence of these
delays on TCP performance and concludes that the spurious
timeouts they trigger may lead to unnecessary
retransmissions. Another experimental work [10] suggests
that carefully designed probing mechanisms can cancel
incompetent TCP behavior over wireless networks. The
authors propose a TCP-Probing modification that prevents
a significant portion of the timeouts and unnecessary
retransmissions caused by handovers. Reference [11]
presents a simulation-based investigation for measuring the
effect of handovers on several TCP versions. The authors
suggest that forwarding might improve TCP performance at
handover, pointing out that duplicate packets should be
filtered at the access point.
There are also many surveys exploring the problematic
aspects of TCP over wireless networks (e.g. [12, 13]).
Some of them analyze existent solutions for dealing with

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6220

TCP throughput degradation due to handovers and lossy
links. In [12] the authors conclude that selective
acknowledgements and explicit loss notifications can
significantly improve performance. Several works propose
models for TCP throughput prediction, e.g., [14, 15, 16, 17,
18]. An overview of these works can be found in [14, 15].
The authors of [16] present a model for studying the effect
of general packet loss caused by network congestion on
TCP Reno.
It predicts the throughput of a TCP connection as a function
of loss rate and RTT. It assumes that if a packet is lost, all
the remaining packets transmitted until the end of that
round will be lost as well. The impact of mobility on the
performance of TCP has drawn a lot of attention, in the last
years. For example, the authors of [22] analyze packet drop
scenarios in cellular networks, which are attributed to
handovers, to poor wireless link conditions or to
congestion. They suggest incorporating a finite state
Markov channel model into the TCP flow control in order
to adapt the response of the sender to the real cause of the
packet drop. They show that this model indeed improves
TCP performance in cellular networks.
In [19], the authors calculate the probabilities for packet
loss, taking into account network congestion and the loss
caused by handovers. Then, they incorporate these
probabilities into the prediction equations from the
Amherst model [16]. In [22], the authors concentrate on
calculating loss probabilities and finding the throughput as
a function of the amount of lost data.
With the increasing capabilities of mobile devices and of
the data rates offered by mobile networks, mobile
multimedia services over TCP become popular. Examples
to these services are Smooth Streaming by Microsoft [17]
and Live HTTP Streaming by Apple [18]. An overview of
the multimedia streaming standards for 3GPP mobile
networks is presented in [19]. In [20], the authors present
an analytical model for evaluating the performance of
multimedia streaming over TCP. They explore how various
network parameters, such as delay, loss rate and
retransmission timeout, effect the throughput of TCP
streaming applications. They also show that TCP streaming
provides good performance when the available network
bandwidth is roughly twice the video bit-rate. In [21], the
authors address the issue of limiting the latency introduced
by TCP. They discuss the importance of low latency to
streaming applications and show how such latency can be
obtained using dynamic adaptation of the TCP sender’s
buffer.
In [21], the authors discuss the importance of TCP-
friendliness to adaptive streaming in mobile networks.
Using simulations, they show that the ability of a TCP-
friendly protocol to dynamically adapt the bit-rate of the
stream can significantly improve various performance
indicators in mobile networks, such as loss rate, delay and
buffer space.
In several papers the authors propose schemes to be used
by the intermediate node to inform the sender of route
failure [23, 24]. With Explicit Link Failure Notification
(ELFN) [24], a node that detects a link failure notifies the
TCP sender. The sender then freezes its retransmission

timer and periodically sends a probing packet until it
receives
• The Route-control mechanism informs the sending node
not only about the need to retransmit a packet, but also
about the need to take actions due to the change of route.
EPLN does not provide this information, because with
source-routing the sending node is supposed to know when
a new route is used.
• EPLN plays a role when a route is broken. In contrast, the
Route-control mechanism helps when a route changes.

III. TCP DETECTION OF BROKEN ORDER AND

RESPONSE WITH TIME STAMP OPTION (TCP- BO)

ALGORITHM
TCP-BO algorithm is an end-to-end layered proposed
solution to improve the performance of TCP in MANET. It
deals with TCP layer in TCP/IP architecture. In the TCP
implementation in wired networks, TCP assumes that
packet losses are mainly due to congestion in the network.
As a result, when a packet loss is indicated, it enters into
congestion control and packet recovery algorithms. This
may not be suitable in a wireless network. Because it
maintains multiple routes between sender and receiver, and
a significant amount of packet losses could be due to
delivery of broken order packets and packet loss. The TCP-
BO algorithm is a modification in TCP-SACK both at the
receiver and sender side, aiming to provide some possible
solution by responding for detection of broken-order
packets and changes the time at which congestion control
algorithm is invoked.
Once broken-order packet is detected, The TCP receiver
informs the TCP sender by setting broken-order bit in the
TCP header. On the reception of broken order bit, for a
time period T the TCP sender: -
1- Temporarily disables some of the state variables like
Duplicate Acknowledgment (DUPACK) and RTO.
2- Adjusts the Congestion Window Size (CWND) based on
the network condition.
3- Send one new packet.
Otherwise,
 If out-of-order packet is not detected by the receiver

and the receiver sends three DUPACKs. On the
reception of the first DUPACK at the sender side, for a
time period T disable triggering of duplicate
acknowledgment algorithm and send one new packet.

 If within the disabling period the packet that is out-of-
order is not reached, call congestion control algorithm.

A. TCP-BO Algorithm

Algorithm 1. Pseudo-code of broken-order packet
detection at the receiver side

1- Retrieve the time stamp (present_pkt_ts_) from the
incoming packet, which is sent by TCP sender.

2- Retrieve the previously saved packet time stamp
(saved_time_) that is recorded in TCP receiver.

3- Compare the present packet time stamp with the
previously received packet time stamp, i.e.:

If (present_pkt_ts_ < saved_time_) {

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6221

1- Set broken order option bit (bo_option_) to 1

2- Send broken-order option bit (bo_option_) with the ACK
packet to be acknowledged to the TCP sender.

3- Put the value of present packet time stamp
(present_pkt_ts_)

into saved time (saved_time_) for the next comparison.

4- Then reset bo_option_ = 0, present_packet_ts_ = 0 and
other necessary variables.

// bo_option_ a variable which should be put in the TCP

header (tcp.h)

}

Else {

In -sequence packet is received

Send ACK (same as TCPSINK does)}

Algorithm 2. Pseudo-code of broken-order packet response
at the sender side

1 – Retrieve the received acknowledgment header and
check for broken-order option bit (bo_option_).

If (bo_option bit is set to 1) {

For a time period T, The TCP Sender disables its state
variables

i.e.

For (Disable period = RTT) {

1 - Set number of duplicate acknowledgment (dupacks_) to
zero.

2 – Set the retransmission time out (timeout_) to false.

3 – Adjust the congestion window size (cwnd_) by
invoking the

Open congestion window algorithm.

4 – Send one new packet.

}

}

Else if (Three duplicate ACK) {

For (Disable period = RTT)

{

- Invoke send one algorithm in order to send one new
Packet.

If (disable period expires)

{

Call fast retransmission and fast recovery algorithms.

}

}

}

Else if (standard ACK is received)

{

Do as standard TCP-SACK does

}

Figure 5: TCP-BO Broken order detection of packet and

response mechanism

Figure 6. TCP-BO packet loss detection

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6222

IIII. PROPOSED METHODOLOGY
In this paper, it is confirmed that out-of-order packet is
really delivered due to multi-path route between TCP
sender and receiver, which has significant performance
degradation effect. Proposed TCP-BO algorithm improves
the performance of TCP by detecting and responding for
out-of-order packet delivery. TCP-BO algorithm tries to
reduce unnecessary invoking of congestion control
algorithm and retransmission of packets.
A. Implementation of TCP-BO algorithm using NS-2
The implementation of TCP-BO algorithm is based on one
of the TCP version known as TCP-SACK modules both at
the receiver and sender side. At the TCP receiver side the
recv () method, which is called whenever new packet is
received, and the ack () method, which is processed
whenever an acknowledgment is prepared to send to the
TCP sender, are mainly used to implement the proposed
algorithm. Both the methods are modules of the SACK at
the TCP receiver and sender side. Necessary modifications
are made in the agent named class TCPSINK and its recv ()
function, which is the main reception path for packets and
provides various other necessary methods. One variable
known as ooo_option has been included in the TCP header
format so as to inform the sender about the detection of out
of order bit. At the sender side the main modification is
done on the receive method. This method should check for
two variables, namely ooo_option bit and scoreboard. Up
on the reception of ooo_option bit it checks for the value of
this bit, if it is one, some of the variables like number of
duplicate acknowledgment (numdupack_), and
retransmission timeout (timeout_) will be disabled and
opencwnd () will be called so as the congestion window to
evolve. Lastly, send_one () function will be called, which
sends one new packet in order to utilize the network
effectively. If ooo_option bit is set to 0 and numdupack_
becomes increments, the TCP sender will check this
increment from the variable known as scoreboard, that is it
Checks for a duplicate ACK, which Check the SACK block
actually acknowledges new data or not and one the
increment of numdupack_ = 1, TCP sender will disable
triggering of dupack () function, instead it will call
sendone() algorithms so as to send one new packet, if
within the disabling period the packet which is lost or out
of order is not come, dupack () function will be called,
which retransmit the lost packet and reduce the congestion
window size cwnd_. Figure shows the implementation
hierarchy and the important C++ classes for TCP-BO
implementation are shown with darker shade.

 Table I Salient Simulation Parameters

Parameter Value
Simulation time 150 Sec
Simulation area 1000m x 1000m
Routing Protocol TORA
No. of nodes 20
Packet size 512 Bytes
Max queue length 50
TCP-Variant TCP-SACK
MAC type IEEE-802.11
Proposed Algorithm TCP-BO

Figure 7. Implementation Hierarchy Of NS2

In Figure 6, between 100 and 110 simulation seconds, the
congestion window size reduced a lot, which is the effect of
out-of-order delivery of packets. This reduces the TCP’s
sender CWND that affects the maximum number of packets
that can be sent by the TCP sender (throughput). Whenever
the CWND reduces drastically, it means packets are
reached out-of-order in which the TCP receiver produces
either three duplicate acknowledgment or the expected
acknowledgment is not come with in the retransmission
time out period, If time out is occurred, slow start threshold
is reduced to half of the current congestion window size,
the CWND is reduced below SSTRHESHOLD that is the
TCP sender enters in to slow start and start sending packet
from one and continuous sending exponentially until it
reaches to slow start threshold (SSTRHESHOLD). If the
CWND is reduced but not below SSTRHESHOLD, then
the TCP sender has received three DUPACKs, so it will
start from congestion avoidance phase. Figure 6, shows the
effect of proposed TCP-BO algorithm that reduce
unnecessary invoking of congestion control algorithm and
retransmission of packets.

Figure 7: Congestion window Vs simulated time.

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6223

Figure 7, shows the size of congestion window for
simulated time that is somehow good in case of TCP-BO
algorithm relative to base TCP-SACK.

Figure 8 : Slow start threshold versus simulation time.

Figure 8: Sequence number versus simulation time.

V. CONCLUSION AND FUTURE WORK

From Simulation results, it is confirmed that out-of-order
packet is really delivered due to multi-path route between
TCP sender and receiver, which has significant
performance degradation effect. Proposed TCP-BO
algorithm improves the performance of TCP by detecting
and responding for out-of-order packet delivery. TCP-BO
algorithm tries to reduce unnecessary invoking of
congestion control algorithm and retransmission of packets.
All measures taken by the TCP-BO algorithm improve the
bandwidth utilization and increase the performance of
routing protocol (TORA) as compared to TCP-SACK.
Further in this direction our aim is to compare the
performance of other routing protocols under proposed
TCP-BO congestion avoidance mechanism by avoiding
unnecessary retransmission.

REFERENCES
[1] K.Sunderesan, V.Anantharaman, R.SivaKumar, “ATP reliable

transport protocol for adhoc networks,” Proceeding of 4th ACM
international Symposium on Mobihoc, June 2003pp 64-75.

 [2] B. Bakshi, P. Krishna, N.H. Vaidya, and D.K. Pradhan, “Improving
Performance of TCP over Wireless Networks,” Proc. 17th Int’l Conf.
Distributed Computing Systems (ICDCS), May 1997.

 [3] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in Wireless
Multi Hop Networks,” Proc. IEEE Workshop Mobile Computing
Systems and Applications, Feb. 1999.

[4] G. Holland and N.H. Vaidya, “Analysis of TCP Performance over
Mobile Ad Hoc Networks,” Proc. ACM MOBICOM Conf., pp. 219-
230, Aug. 1999.

[5] J.P. Monks, P. Sinha, and V. Bharghavan, “Limitations of TCP
ELFN for Ad Hoc Networks,” Proc. Workshop Mobile and
Multimedia Comm., Oct. 2000.

 [6] T.D. Dyer and R. Bopanna, “A Comparison of TCP Performance
over Three Routing Protocols for Mobile Ad Hoc Networks,” Proc.
ACM MOBIHOC 2001 Conf., Oct. 2001.

[7] Sami Iren and Paul D Amer, “The Transport Layer tutorial and
survey” ACM computing survey, vol 31, No. 4, December 1999.

[8] Yue Fang , McDonald A .B “Cross layer performance effect of path
coupling in wireless adhoc network power and throughput
implications of IEEE 802.11 MAC “conference 2002,21st IEEE
International , pp 281-290.

[9] A. Gurtov, “Effect of delays on TCP performance,” in Working
Conference on EmergingPersonal Wireless Communications, 2001,
pp. 87–108.

[10] A. Lahanas and V. Tsaoussidis, “Experimental evaluation of TCP-
Probing in mobile networks,” Journal of Supercomputing, vol. 23,
pp. 261–279, 2002.

[11] J. Schuler and T. Schwabe, “A comparison of the performance of
four TCP versions during mobile handoff,” IEEE MWCN, Sept.
2002.

[12] H. Balakrishnan and et al., “A comparison of mechanisms for
improving TCP performance over wireless links,” IEEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 756–769, Dec. 2000.

[13] V. Tsaoussidis and I. Matta, “Open issues on TCP for mobile
computing,” Wireless Communications and Mobile Computing, vol.
2, pp. 3–20, 2002.

[14] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model of
TCP/IP with stationary random losses,” IEEE/ACM Transactions On
Networking, vol. 13, no. 2, pp. 356–369, April 2005.

[15] M. Goyal, R. Guerin, and R. Rajan, “Predicting TCP throughput
from non-invasive network sampling,” INFOCOM, 2002.

[16] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling
TCP Reno performance: a simple model and its empirical
validation,” IEEE/ACM Transactions on Networking, vol. 8, pp.
133–145, 2000.

[17] A. Kumar, “Comparative performance analysis of versions of TCP in
a local network with a lossy link,” IEEE/ACM Transactions on
Networking, vol. 6, no. 4, pp. 485–498, 1998.

 [18] V. Argyriou, Antonios; Madisetti, “WLC47-1: Modeling the effect
of mobile handoffs on TCP and TFRC throughput,” GLOBECOM,
2006.

[19] A. Zambelli, “IIS smooth streaming technical overview.” [Online].
Available: http://www.microsoft.com/downloads/

[20] A. Goel, C. Krasic, and J.Walpole, “Low-latency adaptive streaming
over TCP,” ACM TOMCCAP, vol. 4, August 2008.

[21] K. Tappayuthpijarn, G. Liebl, T. Stockhammer, and E. Steinbach,
“Adaptive video streaming over a mobile network with TCP-friendly
rate control,” IWCMC, pp. 1325– 1329, 2009.

[22] F. Hu and N. Sharma, “The quantitative analysis of TCP congestion
control algorithm in third-generation cellular networks based on
FSMC loss model and its performance enhancement,” INFOCOM,
2002.

[23] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash,
“feedback-based scheme for improving TCP performance in ad hoc
wireless neworks,” IEEE Pers. Comm. Mag., vol. 8, no. 1, Feb.
2001.

[24] G. Holland and N. H. Vaidya, “Analysis of TCP performance over
mobile ad hoc networks,” in MobiCom, Aug. 1999.

Monika Nath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6218-6224

www.ijcsit.com 6224

